
WHAM!: A Forms Constructor for Medical Record Access via the
World Wide Web

Alexander Hinds1, Children's Hospital Informatics Program, Children's Hospital, Boston, MA
Philip Greenspun, Laboratory for Computer Science, MIT, Cambridge, MA

Isaac S. Kohane, MD, PhD, Children's Hospital Informatics Program, boston, MA

WWW-EMRS is cai architecture that provides a set of
abstractions of electronic medical record systems
(EMRS). This architecture has enabled us to
implement initerfaces to heterogeneous EMRS via the
World- Wide Web that provide consistent visual
presentationis and finctionality. We describe WHAM!,
a progranm that allows rapid generation of customized
interfaces to WWW-EMRS that therefore deliver the
customized functions across multiple EMRS.

INTRODUCTION
The rapid growth in the number of deployed

electronic medical record systems (EMRS) has not
been accompanied by convergence in their
implementations. They use different database
management systems, different data and organizational
models, different user interfaces, different vocabularies
and client-server architectures. Among the
consequences of this large-scale heterogeneity is the
difficulty of following the course of a patient across
multiple institutions or to aggregate data across these
institutions. Furthermore, each additional EMRS that
a provider must use requires a substantial training
effort. The WWW-EMRS is an architecture that we
have developed as part of a collaborative project with
the National Library of Medicine in order to address
these problems. WWW-EMRS provides an
abstraction of the data content and services of medical
record systems that is independent of the
implementation of any particular EMRS. WWW-
EMRS provides access to these abstracted services via
an interface to the World Wide Web (WWW) which
provides us with uniform access on multiple hardware
platforms throughout the Internet. We have already
implemented a working prototype of WWW-EMRS
[1,2] using the Clinician's Workstation (CWS) [3] as
the underlying EMRS. In our earlier work,
implementing the visual interfaces required
programmers experienced in the HyperText Markup
Language (HTML) and in the structure and functions
of the WWW-EMRS abstractions. If WWW-EMRS
is to be adapted to the practices of the wide range of
users that typically use EMRS, then a much more
straightforward and efficient mechanism for authoring
functions and views must be provided. Consequently,
we have built an interactive graphical tool that permits
users to easily construct database query forms
customized for specific clinical environments and
needs. This tool, WYSIWYG HTML Authoring for
Medicine (WHAM!) generates the forms linking
HTML forms to component services of WWW-EMRS
without requiring the author to have knowledge of

1 Visiting student from Section on Medical
Informatics, Stanford Univ., CA. Correspondence
should be addressed to Isaac Kohane.

either HTML or any particular database technology. A
WHAM! user creates the forms' layout using graphical
tools, much as with a drawing program. These forms
are used by general purpose WWW clients, such as
Mosaic and Netscape. Thus, a physician temporarily
at an outlying clinic can still access his or her
patients' charts, a network-linked referring nurse
practitioner can check on a patient's progress, a
clinical researcher can generate ad hoc queries, and a
utilization researcher can review clinical
documentation at multiple hospitals. Each provider
will have a customized view of the EMRS that is
consistent across the multiple EMRS that document
their patients' course and treatments.

In this paper we first describe the background to
the development of WHAM! including a brief
description of WWW-EMRS as well as work done in
providing users with graphically intuitive data-base
query tools. We then review the design considerations
that drove the development of WHAM! to its present
implementation. To further motivate the design
choices, we provide an example of designing and
using a WHAM! form to query the currently
implemented version of WWW-EMRS.

BACKGROUND
WWW-EMRS

The WWW-EMRS architecture has been designed
to provide sufficient abstractions of the functions and
presentations of most EMRS so that any WWW
browser can deliver consistent views and user
functionality independent of the particular
implementation of the EMRS. The two principal
abstractions are the Common Medical Record (CMR)
and the Visual Presentation Server as illustrated in
Figure 1. The CMR specifies information services
over of a set of data elements that are common to
multiple EMRS. The visual presentation server
organizes the data retrieved from the CMR into
archetypal layouts (e.g. spreadsheet, annotated picture,
list) that is independent of the language that the
presentation will be finally implemented in. The
Visual Presentation Server also associates permitted
user interactions with each presentation element. Each
layer of abstraction in the WWW-EMRS requires an
active process capable of mediating the messages
between each layer (e.g. converting SQL queries of a
local EMRS into CMR query messages). One of the
major efforts in the development of WWW-EMRS is
to achieve sufficient breadth in both the CMR and
Visual Presentation Servers so that they satisfy the
needs of several classes of users and work with the
mechanisms of different local EMRS. After the
success of our initial WWW-EMRS implementation
with the CWS, we have been working with other
developers of EMRS to ensure that the WWW-EMRS,
and particularly its CMR component, can serve these
other, divergent EMRS.

0195-4210/95/$5.00 © 1995 AMIA. Inc. 116

Figure 1: Architecture of W3-EMRS

WHAM! bypasses the Visual Presentation Server
by directly describing visual elements in the HTML
syntax and by associating CMR queries directly with
the HTML forms. This enables a user to develop a
WHAM! form locally for use with their WWW client
program without having to modify or attach new
document types to the Visual Presentation Server
(which may be located at a remote site along with the
EMRS being accessed).
User-Interface Authoring Tools for EMRS

Several commercial tools exist that enable
developers and end-users to rapidly develop graphical
user-interfaces to a large class of data-base product. For
example, PowerbuilderTM (Powersoft Corp.), and
Foxbase Pro (Microsoft Corp.) all provide fairly
comprehensive tools to generate customized screens
for data entry and retrieval. These products depend on
having access to the data dictionary for the database for
which they are building tools. Also, to maintain their
generality, these tools do not have any knowledge of
particular domains such as electronic medical record
systems. In contrast, knowledge-based systems such as
PROTEGE-II [4] include mechanisms to acquire
different kinds of task and domain-specific knowledge
(e.g. knowledge about clinical protocols). The
PROTEGE-II system can then be used for the
development of domain-specific tools such as user
interfaces for data entry or knowledge acquisition.
Also, the PEN&PAD system [5] uses a clinical
information model to drive the generation of data input
forms.

DESIGN CONSIDERATIONS
The design considerations for WHAM! fell into

several areas. First, we wanted the tool to run on the

roughly the same range of machines on which the
WWW browsers were available and to present an
intuitive interface.

Second, we wanted to build on existing networking
technology and client/server solutions as much as
possible. A traditional way to accomplish our goals
would be to insist that all potential users of the
system adopt custom-built network protocols and
interfaces. However, we specifically wanted the
(output of the) tool to be usable with general purpose
clients, (e.g.. Netscape and Mosaic). Extending the
functionality of the standard WWW browsers might
unnecessarily compromise the acceptance and
accessibility of the WWW-EMRS project.

Third, we wanted to provide a set of clinical
display and interaction object libraries. Each object
would correspond to one of several commonly required
clinical data-types and editing tasks, and would in turn
be used to generate parts of HTML documents which
embody task or clinic-specific viewer/editors. Users
would assemble various objects to form compound
documents whose output would be the final HTML
specification of the evolving form.

To accomplish all the above goals, we chose to
write all code in a dialect of Smalltalk called
SmallTalkAgents (by Quasar Knowledge Systems) for
the Macintosh. STA was chosen as the development
environment because it supports rapid prototyping,
allows the creation of standalone double-clickable
Macintosh applications, and supports Platform
Independent Portable Objects (PIPOs). PIPOs allow
WHAM! to run with minimal or no modification or
even recompilation on a variety of platforms,
including SunOS, Windows, and OS/2.

SYSTEM DESCRIPTION
Architecture Overview

All WHAM! forms are compound documents:
documents consisting of one or more components.
These components are graphical representations of
HTML primitives, such as horizontal bars or lines of
text, and more elaborate components that reflect data
in the Common Medical Record (CMR) and "know"
how to perform CMR transactions.

Our first step towards developing a compound
document solution was the definition of a small subset
of clinical document components that are common to
the viewing and editing tasks. Note that this effort is
quite distinct from the specification of the format and
structure of an EMRS data-base. For example, for each
pathology report, a data-base may contain various
tables, the text of the report, the signatories,
documentation regarding processing of the tissue
sample, an image of the sample, the site obtained and
the name of the surgeon who obtained the specimen.
Only a subset of this information is required by most
clinical users and therefore the corresponding clinical
document components should reflect these
requirements.

The clinical document components were identified
by reviewing the existing WWW-EMRS interface and
identifying the recurrent presentation formats and
archetypal data-relations.

117

Figure 2: WHAM! I
Our compound document architecture allows

special-purpose code resources to be embedded in the
document . These embedded code resources consist of
small fragments of transaction specifications. That is,
for each visual element in a clinical document
component, we are able to specify the information
required from the user or from the data-base required to
display that element.

After developing a library of such clinical
document components, we were able to design a
variety of EMRS viewer/editors. Designers of WWW-
EMRS user-interfaces (currently, only the authors)
pick and choose among the available clinical document
components those that best suit a particular class of
clinical tasks. These are then assembled into one or
more compound documents. The WWW client then
makes the best presentation of the HTML document
possible on the user's hardware.

We intentionally did not develop a complex
compound document Applications Programmer
Interface (API) as from the outset we anticipated
evaluating and then choosing one of the candidate
"intelligent" compound document architectures such as
OLE (Microsoft Corporation) or OpenDoc [6], a
cross-platform standard for compound documents and
components.2
Components

A user works with components, which comprise
the pieces of a document. These components include
both document data and the component-editor code that
manipulates it. In WHAM!, all the components a

2The OpenDoc specification is actually a superset
of OLE, so henceforth OpenDoc is understood to
include OLE.

to designing a form.
user interacts with are derived from the component
class, WHAMCornponenit. Once instantiated, most of
the objects users manipulate are graphical
representations of objects within the CMR as well as
the HTML graphical equivalents those types represent.
WHAMComponents "know" how to create themselves
from HTML, present themselves graphically, generate
the HTML which they represent, and for those
components where it's relevant, provide enough
information for the CMR server to construct a query.
Storage
WHAM! uses ASCII text files in HTML format to

save and restore documents. Each saved file can be
thought of as a collection of storage units. A storage
unit is an ordering of properties a single component
has used to save its state. A property, in turn, is an
ordering of tag, value pairs. Storage units and
properties are not first-class objects in the sense that
they have no official representation in the file.
However, they are inferred by components when a
given component attempts to restore its state given an
HTML stream.

To allow the CMR server to return a form with its
empty fields filled in, each file contains one hidden
field that contains a copy of the HTML used to make
up the form itself. The WWW standard for a sending a
filled-out form to the server sends only field names and
their contents, not the HTML comprising the form, to
the server. The CMR-WWW interface gets values
from the database for all the blank fields, then needs a
copy of the original HTML that specified the form.
The hidden field (<input name = "HTML" type =
hidden value = "...") supplies this HTML and the
CMR-WWW interface substitutes all the appropriate
field values then returns the new HTML to the client.

118

AGD6- dm

Edam

roblem Ppr Pt Test Hist Q Doc Descript
AM-

R'IN li
IM,SOf.41

Interface Description
When WHAM! starts, it opens three windows

(Figure 2 includes these three and a fourth window
described below). The Form Objects (lower left)
window presents the user with an interface similar to
that of the Macintosh Finder: all components the user
will manipulate are contained within its hierarchical
folders. Users select components by navigating the
folders in a manner similar to the operation of the
Finder. When he finds a component of interest, he can
drag it onto the current document where it will be
inserted where the mouse was released.

Interaction metaphors include direct manipulation.
By this we mean that most elements on the form can
be edited by clicking on them. For example, text can
be edited by simply selecting it and typing
replacement text; input lines can have their default
text set by selecting them and typing in the text; and
joins can be added to the evolving form by simply
clicking in the join "pane" on the form (which
subsequently opens the Join Construction window).

Most of the folders in the Form Objects window
(with the exception of the 'Primitives' folder)
correspond to data objects defined in the CMR; folder
components correspond to attributes of one CMR data
class.

The Untitled window (upper left, figure 2) is the
document on which the user will operate. As shown in
the figure, no data elements from the CMR have been
yet been selected. The Untitled - HTML window
(upper right, figure 2) allows the user to view the
HTML output as it's being generated; that is, its
contents are updated in response to most user actions
that lead to changes in the corresponding Untitled
window. WHAM! does allow the user to make a
limited range of changes to the actual HTML which
can be incorporated into the graphical layouts.
However, WHAM! expects certain formatting
conventions in the files it generates, and deviations
from these conventions may result in WHAM! being
unable to parse the resulting HTML for further
modification The fourth window (lower right)
illustrates the component attributes that appear when a
folder in the Form Objects window is opened. In this
instance it is the components of the document
description folder.

The Join Construction Window (not shown)
is where a user is able to specify the relations between
tables.
WHAM! does not have a model of what constitutes

a meaningful query in the CMR. It is currently
possible for a user to create a form that specifies
syntactically valid queries which are semantically
unsound. This error wouldn't be apparent until run-
time.
WHAM! Query Processing.

Once a WHAM!-generated form is loaded into a
WWW browser, any of the fields in the form can be
filled out. When the users clicks on the "Submit
Query" button, the query function, along with the
values entered into each field in the form are sent to
the CMR. As described above, each form has an
associated hidden field which describes the entire form

and this too is sent to the CMR. Upon receipt of the
WHAM query, an corresponding query is constructed
in the data manipulation language that is native to the
underlying EMRS. The query is composed by using
the filled out fields in the WHAM! form as constraints
on the query and the empty fields as the data elements
to be retrieved. For the CWS EMRS, which is Oracle-
based, this corresponds to the WHERE clause and
SELECT clause of an SQL query.

When the EMRS returns the data elements
requested in the query to the CMR, these are entered
into the appropriate fields in the copy of the WHAM!
form that was sent in the hidden field of the original
WHAM! form. Also, the values of the field that were
filled out by the user are replaced in their respective
positions in the copy of the form. The filled-out form
is then sent from the CMR to the WWW browser via
the Internet. The user of the WHAM! form can then
modify the contents of the returned form and resubmit
it to further explore the EMRS data.

If the query returns several sets of results matching
the query constraints, they are presented as
concatenated pages. If the user wishes to reduce the
number of sets returned, she can constrain the query
further by filling out more fields in the form.
Currently, it is possible for the CMR to return an
overwhelmingly large number of WHAM forms if the
query is grossly underconstrained. Limiting this
phenomenon is one of the priorities of future work on
WHAM!

RESULTS-EXAMPLE OF USE
It is often useful to know a patient's problem list,

as summarized by clinicians who have cared for the
patient in the past. In this example, we have used
WHAM! to construct a form that includes the patient's
last and first name as well as the name of any problem
annotation. Although the CMR contains much more
richness in its description of patients and problem
annotations, this form has been limited for purposes
of illustration.

To generate the form, the patient names fields were
"dragged" from the demographics folder to the
WHAM! form and the problem name was dragged
from the problems folder. The Join Construction
Window was used to tie the problem to the patient
name via the patient's medical record number. Finally
the Submit Query and Reset buttons were dragged
from the Primitives folder. The resulting form is
illustrated in Figure 3. Subsequently, the form was
titled "Problem List" and saved.

Figure 4 shows the WHAM! form as it appears
when displayed by aWWW browser, after the user had
submitted it, having filled out the first and last name
of the patient. This example form is significantly less
compact and visually appealing than the pre-existing
hand-crafted forms designed for WWW-EMRS.
However, we do believe that the current tradeoff
between ease of use and design flexibility can be
readily shifted.

119

....... ':%M:XN!M

,o.-.-.-.-e-

,::.: PRTJI pralI m T

sumbit wbg Re.e

iS1~~~~~~~~~~... ...

Figure 3: WHAM! Form,_..-................................
pt4mraph.PAY NUtS problems PMT MUt

iubrSsvSmi>,.xr_-<sQxW_wsR 1
...

The WWW EMRS architecture provides a
powerful, extensible, multiplatform architecture for
accessing data from multiple heterogeneous EMRS.
However, it does not provide of itself the means for
easily customizing the display of data and modifying
the functionality of the interface. WHAM! makes a
substantial first step towards this goal. Users of
WHAM! can design functional forms without any
knowledge of the underlying EMRS or the architecture
of WWW-EMRS. This enables clinicians and other

users to generate ad hoc queries against multiple
EMRS to which they have authorized access without
necessarily requiring major technical support. It also
allows information services groups to provide rapid
prototype functionality to diverse groups of end users
in addition to using the pre-assembled forms that come
with the WWW-EMRS.

Our initial experience with WHAM! suggests
several tasks to improve its performance and utility.
These include: 1) Improving the management of
underspecified queries. We will be investigating
knowledge-based mechanisms to determine how much
data should be returned for a given query before
prompting the user to reconsider or respecify the
query. 2) Adding the same range of visual
presentation types (e.g. flowsheets, lists) to WHAM!
as is currently available in the hand-crafted WWW-
EMRS forms. 3) Adding support for
cryptographic/security services for individual
components of WHAM! forms. 4) Supporting
additional transaction types with the CMR. 5)
Investigating the adoption of document component
architectures such as OpenDoc for the WHAM!
component architecture to permit interoperability of
components from different developers.

References
[I] Kohane, I. S.; Greenspun, P.; Fackler, J.;

Szolovits, P. Accessing Pediatric Electronic Medical
Record Systems via the World Wide Web. Pediatric
Research 1995, 37, 139A.

[2] Kohane, I.; Greenspun, P.; Fackler, J.;
Cimino, C.; Szolovits, P. W3-EMRS: Access to
Multi-Institutional Electronic Medical Records via
with World Wide Web To appear in: Spring Congress
of the American Medical Informatics Association.
Boston, MA: 1995.

[3] Kohane, I. S. Getting the Data In: Three-Year
Experience with a Pediatric Electronic Medical Record
System In: Proceedings, Symposium on Computer
Applications in Medical Care. J. G. Ozbolt.
Washington, DC: Hanley & Belfus, Inc., 1994:457-
461.

[4] Musen, M. A.; Gennari, J. HI. Eriksson, H.;
Tu, S. W.; Puerta, A. R. PROTEGE-LI: Computer
Support for Development of Intelligent Systems In:
Eighth Wolrd Congress on Medical Informatics.
Vancouver, Canada: (in press), 1995:

[5] Healthfield, H. A.; Hardiker, N. R.; Kirby, J.
Using the PEN&PAD Information Model to Support
Hospital-Based Clinical Care In: Proceedings
Symposium on Computer Applications in Medical
Care. J. G. Ozbolt. Washington, DC: Hanley &
Belfus, Inc., 1994:452-456.

[6] "OpenDoc Programmer's Guide," Apple
Computer Inc, Developer Press, (c), Seed Draft
11/16/94 1994.

Acknowledgements
This research was supported by the National

Library of Medicine (UOI LM05877-01), and in part
by the Oracle Corporation and the Charles Hood
Foundation.

120

